

©EXPMON. Website: expmon.com. Email: contact@expmon.com Page 1

The EXPMON System - Advanced Detection and Analytics for File-based Exploits

- Detecting zero-day/unknown exploits through designing the system right

Methodology and Architecture

Introduction

EXPMON (exploit monitor) is a sophisticated system that analyzes file-based samples in depth. It uses

crafted sandboxing and static analysis techniques to check if a file sample could be a potential exploit.

Essentially, it analyzes and saves metadata in an approach we call "environment binding". This allows us

to perform future advanced "Big Data" analytics to find undetected exploits and continuously improve

the system.

The core idea of EXPMON is that it runs the sandboxes based on a concept we call "environment

binding." This is because exploits run very differently than malware. Exploits are highly dependent on

the specific software environment; we can't examine exploits without considering the environment. For

example, a .pdf exploit for Foxit Reader may not function as a working exploit on Adobe Reader. If you

use a sandboxing environment with Adobe Reader to test the .pdf sample, you will miss out on the

exploit. Sometimes, an exploit may target specific software versions and act normally on others.

EXPMON is designed and built from the perspective of vulnerability research, in contrast to others that

are all built based on malware research. This, in fact, constitutes the core difference between this

system and other sandbox-based systems. There is a significant need in the security community for a

pure, crafted system designed solely for advanced exploit detection, and that's exactly the reason why

we built this system.

The Architecture

We want EXPMON to be a system that is as open as possible, allowing it to benefit the security

community the most. This is why we are sharing the architecture of the system, enabling users to better

understand our approach and leverage the system in their daily operations to combat advanced

exploits.

The high-level architecture is illustrated in the following figure:

©EXPMON. Website: expmon.com. Email: contact@expmon.com Page 2

As we can see, at a high level, the system appears quite simple (although in detail, it is a highly

sophisticated system). It comprises the Controller and the VM Server(s). The controller serves as the

core component, it does many jobs including calling the VMs in the VM Servers for sandbox-based

analysis.

EXPMON system can only have one Controller but may feature one or multiple VM Servers. This

depends on the required "analysis speed" and the computing power the VM Servers can provide. For

instance, if you possess only one VM Server capable of hosting 8 VMs, but you have a substantial

number of samples exceeding the capacity of the 8 VMs, adding another VM Server becomes necessary

to augment the available computing power. The VM Server(s) is basically a pool of VMs.

Following the data flow, the Controller executes the following steps:

1. Accept sample submissions.

2. Perform static analysis.

3. Find the correct VMs (in the VM Servers) and perform sandbox-based analysis.

4. Collect and analyze the sandbox analysis data.

5. Output analysis result to user.

6. Save "file object" samples and raw/meta sandbox analysis data for future analytics.

The above is still a high-level description of the Controller. The detailed process is as follows:

1. Analyze the submitted sample with the static analysis module. This may produce one or several

"file objects" as a result. Each file object is tagged with meaningful metadata to assist the next

sandbox analysis, ensuring more precise execution.

2. For every file object, based on the Controller's configuration, the "scheduler" module locates

and runs the correct VMs for sandbox-based analysis. One file object may be sent to more than

one VM for analysis.

3. Invoke the "detection module" to analyze the sandbox analysis data. The detection module is

our core logic for exploit detection, utilizing a rule-based, environment-binding, and "plugin-

©EXPMON. Website: expmon.com. Email: contact@expmon.com Page 3

like" approach. Maintained by EXPMON, it undergoes periodic updates. We employ Big Data

analytics to enhance the detection module and uncover the most elusive zero-day exploits. The

subsequent step enables us to conduct Big Data analytics.

4. After reporting the analysis results to the user, the Controller saves the raw/meta sandbox

analysis data, tagged with environment-binding information. This facilitates meaningful Big Data

analytics to continuously enhance our detection logic and identify any oversights.

The entire process could be illustrated by the following figure:

For instance, a single submitted sample may be expanded into M file objects, and each file object is

dispatched to N VMs for dynamic sandboxing analysis. The final detection result is determined based on

all the file objects tested across all VMs. Consequently, the total number of running VMs for a single

sample is M*N. This extensive approach ensures a more thorough and in-depth analysis compared to

other sandboxing systems.

Crucially, this is a "detect-analytics-feedback-improve" cycle. Thanks to our environment-binding

approach, we can conduct meaningful Big Data analytics, enabling continuous learning from what we

may have missed and identifying areas for improvement. As we analyze more samples, the system

becomes more precise and advanced, surpassing even the most undetectable file-based zero-days.

©EXPMON. Website: expmon.com. Email: contact@expmon.com Page 4

For example, when testing the system in August 2021, the system was able to detect the CVE-2021-

40444 zero-day exploit with using just a few hundred samples from MalShare (acknowledged by

Microsoft for the discovery).

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444

